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Abstract 

This device is mainly used to transform the particles beam axial speed in radial 

speed. But it has also the capacity, according to the patent, to reversely transform the 

radial speed in axial speed. This would come to focalize the particles of a beam, so 

as to make them almost monoenergetic with a small radial speed. This paper studies 

this device and its possibilities for ions beams. The space charge is not taken into 

account: either it is very weak or the ions beam is neutralized by electrons. 

 

1) Introduction 

For a description of this device, see references [1] and [2] (page 269). 
 
1.1 Principle 
This device (called “Charged particle angular momentum changer” in the reference 
[1]) can permit (according to the patent) to reduce the radial speed of resonant 
particles and to reduce the dispersion around the nominal speed. It is selective, i.e. it 
can be used for a given particle (D+ ion or T+ ion, for example) at a certain speed. 
Ideally, it will act on the particle targeted and will not modify the distribution of other 
particles (not resonant). 
 
Let’s suppose an ion rotating due to its cyclotronic movement: 

 with a pulsation w=q .Ba / m with Ba the axial magnetic field, 

 on an orbit of Larmor radius Rl = (m . Vr) / (q . Ba), with Vr the radial speed. 
 
The principle to reduce this radial speed Vr is the following. A rotating radial field Br is 
built by a helix, field supposed in phase with the ion trajectory (in a transverse plane). 
This radial field Br acting on the axial speed Va, causes a force F opposed to the 
cyclotronic rotation: F = q . (Va ^ Br), with ^ the cross product. Vectors are in bold 
font.  The algebraic value of F is equal to F = q . Va . Br because Va is supposed 
always perpendicular to Br. See the diagram (a) of the reference [1]. 
 
Reversely, if the difference of phases is equal to π, the force F tends to accelerate 
the cyclotronic rotation. 
More generally, with a difference of phases equal to 0 +/- π/2 the rotation is slowed 
down but with π +/- π/2, the rotation is accelerated. 
 
Of course, in the case of an ion not having any radial speed (Vr=0), this ion is going 
to acquire radial speed, due to the force F, in any cases. 
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See the figure 1 below with the ideal case where a particle is focalized. 

 
 

Figure 1 
 

The pitch p (i.e. distance between two turns) of the corkscrew must evolve as: 

     
           

    
 (resonance condition). Va(z) is the axial speed (the axis being 

carried by the vector z). Va(z) is not known a priori. It will be necessary either to 
make a simplified calculation to have an idea of its evolution, or to make a hypothesis 
on its evolution (preferred by the author). Ba is the confinement axial magnetic field. 
 
1.2 Different types of corkscrews 
 
The most common is a simple helix as shown in the figure 1 above. 
 
Another type is a bifilar winding with currents in opposite direction. See the cut view 
on figure 2 at the next page (cut of the helix at mid-distance, looking to the exit). The 
mean axial magnetic field will be removed due to opposite axial components given by 
each winding. However, locally axial field could be different from 0. This also applies 
to the quadrifilar winding. 
 
More interesting is the quadrifilar winding shown in figure 2 at the next page. See 
also references [1] and [4]. Due to symmetries, the magnetic field is much more 
regular in a section than with a sole winding or, even, a bifilar winding, especially at 
entrance and exit.. 
 
From this quadrifilar winding, it is not necessary to have the complete turns. It can 
remain, for example, a quarter part of the turn, from -45° to 45° for example. This will 
permit to localize the magnetic field inside a certain part of the pipe, the quarter of 
tube between -45° and 45 ° in the example. This will be useful if several beams (4 in 
the example) are circulating in parallel in the pipe.  See figure 2 at the next page.  
The “-“ wires can be connected in parallel. The “+” wires can be connected in the 
same way but with a reverse direction of current compared to the “-“ wires. Other 
connections are possible. 
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Figure 2 

 
 

2) Magnetic radial and axial fields in a helix of constant pitch 

The radial field is given in the different papers on the subject (reference [1] page 4, 

for example) by formulas which consider only the field very close to the axis. 

Afterwards theoretical formulas suppose implicitly that the radial field does not 

depend on the ion radial position, which is about true close to the axis but wrong 

beyond. For example, if the radial field Br is supposed equal to 1 T on the axis (r=0) 

and the helix radius is equal to a, the mean radial field on a section evolves such as 

described below (for a specific helix): 

 At r/a = 0,    Br = 1 T  

 At r/a = 0.2, Br = 1.18 T 

 At r/a = 0.5, Br = 1.93 T 

 At r/a = 0.7, Br = 3.18 T 

 At r/a = 0.9, Br = 9.17 T 

Moreover, on a section, the radial field is bigger close to the helix than far from the 

helix (which is predictable).  

As the radial field depends on r, it is difficult (if not impossible) to determine 

analytically the ion trajectory. 

There are two ways to determine, numerically, the almost exact magnetic field, using, 
in both cases, the Biot-Savart law: 

 either a direct calculation, 

 or by determining the exact formulas for a helix and calculating the fields 
according to these formulas. These ones are given afterwards. 

 
 
These formulas, in SI, give Bx, By, Bz at a given point P determined by Cartesian 
coordinates Xp, Yp, Zp. The helix axis is supposed to spread towards the positive z 
axis. “p” is the pitch (in m), “a” the helix radius (in m), “I” the current through the helix 
(in A). K = 1 for a helix rotating counterclockwise (for ions) and K = -1 for a helix 
rotating clockwise (for electrons). “n” is the number of turns.  
The initial helix position I is supposed located at any Zi and at any angle θi (i.e. 
between –π to π) such that Xi=a . cos(θi) and Yi=a . sin(θi). The point M follows the 
helix. μ0=4.π.1E-7 H/m.  
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Note that, here, the helix is supposed to develop towards the positive Z axis, 
so with a positive pitch (p). If the helix would develop towards the negative Z, 
the pitch would be negative in the formulas. 

 
These integrals are calculated numerically. 
 

   
    

   
  

     

     

           

  

 

   
    

   
  

     

     

           

  

 

   
    

   
  

     

     

           

  

 

 
wx=-K.a.cos(θ).(Zp-(Zi-K.p.(θ-θi)/(2.π)) - p/(2.π).(Yp-a.sin(θ)) 
wy= p/(2.π).(Xp-a.cos(θ)) - K.a.sin(θ). (Zp-(Zi-K.p.(θ-θi)/(2.π)) 
wz=K.a.sin(θ).(Yp-a.sin(θ)) + K.a.cos(θ).(Xp+K.a.sin(θ)) 
 
│PM│= ( (Xp-a.cos(θ))2 + (Yp-a.sin(θ)) 2 + (Zp-(Zi-K.p.(θ-θi)/(2.π))2 ) 0.5 
 
After having determinated the exact magnetic field, it is proposed empirical formulas 
(in cylindrical coordinates) which give approximately the magnetic fields inside an 
helix of constant pitch, in a more simplified way. 
With “Br” for radial field (in T), “Ba” for axial field (in T). ^ means “power” and I0 is the 
first kind of modified Bessel function. For a given radius, “Br” is, vectorially, 
approximately constant, whatever is the azimuth, across the considered section. 
 
Ba = 1.22 E-6 . I / p 
This axial field must be negligible in front of the main axial field. It can be removed 
with a bifilar or a quadrifilar winding (see §1.2). 
 
About Br, this formula is worth for p/a between 1.5 and 3 and, with less accuracy, 
between 1 and 4 (but not beyond). 12 turns are taken into account but Br does not 
vary much with the number of turns. r/a must be limited to 0.9. 
 
Br_on_the_axis = 4.6 E-8 . I / a . (p/a). sin(0.52 .p / a). 
Note that sin(0.52 . p / a) is a correction without any physical meaning. 
 
Br_at_r = Br_on_the_axis . (I0(r/a)) ^ (16 / (p/a)) 
The correction (I0(r/a)) ^ (16 / (p/a)) has no physical meaning. 
 
The radial field phase follows the helix phase with a delay of 90°. 
 

Note: it is reminded that the flow of magnetic field through a closed surface is 
nil (from div B=0, according to the Maxwell Thomson formula). This means 
that it is not possible to physically create a magnetic field which would be 
directed towards the exterior all along an orbit, so as to permanently slow 
down the ion. 
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3) Magnetic radial and axial fields in a helix of variable pitch 

For this type of helix the most simple is to only use the Biot-Savart law, by breaking 
down the helix in small elements and calculating the small fields (along x, y, z) 
generated by each element, the final fields being the sum of these small fields.  
 
However, with a helix of that type, it must be, first, determined the law of pitch 
evolution (p(z)) along the z axis. We suppose, to simplify, that the helix begins at z=0 
and ends at z=L (L being the helix length). 
 
This type of helix is, all cases, better than helixes of constant pitch, but above all for 
long ones.  So it will be implicitly considered long helixes here (see §4.3). 
 
3.1 Pitch law with constant dVr / dz  
The  reference [3] gives this formula: dVr / dz = - wr . cos(χ) with wr= q.Br/m and χ 
the angle between the field direction and the ion angle, the ion position being in 
cylindrical coordinates. 
This formula can be deduced from the mean force F = q . (Va ^ Br) (cf. §1), with Va 
the mean axial speed along the helix. This force projected on the ion trajectory gives, 
if ABS(χ)<90°, a force Fi opposed to the cyclotronic movement: 
|Fi| = q . Va . Br . cos(χ). So dVr / dt = -|Fi| / m = - q . Va . Br . cos(χ) / m 
Now dz=Va . dt so dt = dz / Va and  Va . dVr / dz  = - q . Va . Br . cos(χ) / m which 
simplifies to dVr / dz  = - q . Br . cos(χ) / m. 
 
If we suppose Br approximately constant, the dVr / dz  is also constant. If the goal of 
the helix is to transform all the initial radial speed Vri in axial speed along the helix 
length “L” then dVr / dz  = Vri / L and Vr(z) = Vri + (dVr / dz) . z 

As Va(z) = √(Vion2 – Vr(z)2) is now known,      
           

    
 is also known at any z. 

Vion is the ion speed which can be decomposed in Va (along the z axis) and Vr (in 
the section perpendicular to z). Note that Vr is, in fact, azimuthal along the circular 
ion trajectory. 
 
3.2 Pitch law with constant dVa / dz  

A more simple law is to consider a linear evolution of p(z). It is enough to suppose 
that dVa / dz is constant to consequently have p(z) linear between: 
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 the initial pitch    
         

    
 , with Vai the initial axial speed equal to  

Vai = √(Vion2 – Vri2) 
 

 the final pitch    
          

    
 

So p(z) = pi + (pf-pi) * z/L 
  
3.3 Comparison between these two types of helix and selection of the best one 
 
According to several simulations done at different intensities, it seems that the helix 
with a constant dVa / dz pitch law is better in terms of mean radial speed reduction 
than the same helix with a constant dVr / dz pitch law. 
So from now on, it will be only considered helix with constant dVa / dz pitch law. 
 
 
 

4) Simulation of the magnetic “corkscrew” and results 

4.0 Generalities 

The way to calculate the radial field Br and its phase has been introduced in the 

author’s simulator (called “Multiplasma”). The magnitude of the radial field can be 

adjusted through the current (in A) circulating through the helix. 

All tests of §4.1 and 4.2 are done on an ion injected at 1.932 E6 m/s, the initial radial 

speed being forced to 9.263 E5 m/s. So the initial axial speed is equal to 1.696 E6 

m/s. In §4.1 the helix is 0.18 m long with 3.78 turns and a 2 cm radius. The axial 

magnetic field is equal to 5 T in §4.1 and 4.2 and 2.5 T in §4.3. 

The author makes the hypothesis that the axial speed and, consequently the pitch 

(p), evolves linearly with the distance (d) along the axis (see §3.2), from its initial 

value (i.e. p = p initial + K .d, with K=dp/dy). The initial pitch (p initial) at the helix 

input takes into account the initial axial speed (1.696 E6 m/s). The pitch at the helix 

output takes into account the ion speed Vi (1.932 E6 m/s), because it is considered 

that all the speed is now axial (i.e. complete transformation of the radial speed into 

axial speed). 

 

The linearity of the pitch p directly leads to the determination of: 

 The number of turns n =L/p_mean, with L the helix length and p_mean the 

helix mean pitch. 

 The wire length Lw = (L2 + (2.π.n.a)2)1/2 

4.1 First test 

A first test has been done by forcing the phase of the radial field on the ion phase, 

which simulates the ideal case (which cannot occur in real life). It can be observed 

that the rotational movement is gradually slowed down, as expected, with small 
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oscillations of the radial speed due to the fact that the ion trajectory is not centered 

on the axis. 

Below, according to the current through the helix, it is given the final radial speed (Vr) 

and the final axial speed Va. It can be seen that the minimum of Vr is obtained at 

44500 A, the final radial speed having been reduced by a factor 10, approximately. 

10000 A...Vr final= 6.927E+0005  Va final= 1.804E+0006 

20000 A...Vr final= 5.133E+0005  Va final= 1.863E+0006 

30000 A...Vr final= 3.454E+0005  Va final= 1.901E+0006 

40000 A...Vr final= 1.569E+0005  Va final= 1.926E+0006 

44500 A...Vr final= 8.966E+0004  Va final= 1.930E+0006 

50000 A...Vr final= 2.587E+0005  Va final= 1.915E+0006 

 

4.2 Tests with short helixes 

Other tests have been done without any constraint on the difference of phase 
between radial field and ion trajectory. So the ion trajectory is complex. 

What it appears clearly is that the radial speed evolves typically as shown below. 

 

In the figure above, the radial speed first increases before decreasing, but it could be 
the opposite, according to the initial difference of phase between the radial field and 
the ion (see §1). 

The gradient of radial speed evolution depends on the radial magnetic field applied 
and consequently on the current across the corkscrew. Note that the ion Larmor 
radius depends on the axial magnetic field. 

For example, for a given configuration at 5 T and an initial radial speed equal to 
9.26E5 m/s for a total speed equal to 1.932 E6 m/s and a corkscrew of radius 0.02 m 
and length equal to 0.16 m (3.36 turns): 

 1000 A will make decrease the radial speed from 9.26E5 m/s to 8.89E5, 

 10000 A will make decrease the radial speed from 9.26E5 m/s to 5.45E5, 

 50000 A will make decrease the radial speed from 9.26E5 m/s to 4.28E5, then 
make increase it up to 1.25E6 m/s. 
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So for any particular configuration, after many tests, it will be found a solution of 
“corkscrew” to reduce the radial speed (but not to eliminate it), the configuration 
being defined by: 

 one speed of ion (monoenergetic), 

 a constant ion speed direction (i.e. a constant initial radial speed), 

 a constant ion position at the helix entrance. 

A reduction of half the initial radial speed is a reasonable target. As shown on the 
previous figure, it is useless to dispose of many turns. Only a few turns (let’s say 
inferior to 4 and much probably inferior to 2) are sufficient to reach the first minimum, 
as shown below.  

 

Note that for these very short helixes, it can be used constant pitch,  the 
results with this type not being very inferior to the variable pitch helixes. 

The problem given and solved in figure 8 of reference [1] is typical. The trajectory of 
the ion is predictable and its injection speed is supposed fixed. So it exists a solution 
based on a “corkscrew”. 

Now, if this solution works for this configuration, it will not work for another 
configuration (different ion speed, direction or position). The result can be, possibly, 
the opposite of the one expected (i.e. more radial speed instead of less). 

 

5) About the electrical power consumed by the “corkscrew” and the 
dissipation of this power 

A maximum current density through the coil must be considered to avoid an 

excessive temperature (>200 °C) in the wire. After some tests, a maximum of about  

7 A/mm2 might be respected for this type coil. 

Moreover, the user must assess more precisely the balance between electrical power 

generated and power dissipated, as described below, to determine the real electrical 

power consumed and the expected mean temperature of the coil. 

It is reminded that the electrical power Pe consumed is equal to Pe = R.I2 where 

R= ρ . Lw / Sw with: 

 ρ the ohmic resistivity of copper. ρ =17.2E-9 Ω.m at 20 °C, which slowly 

increases with temperature: ρ = 17.2E-9 . (1+ 3.8E-3 . (T – 293)), with T in °K. 

For example, ρ = 20E-9 Ω.m at 60°C. 

 Lw the wire length (m), 
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 Sw the wire section (m2) = π . rw2, with rw the wire radius.  

To cool the coil in the vacuum, there is no convection, but only conduction through 

the coil stand (on both ends) and radiation. The following description is rough but 

sufficient for an assessment. 

About the power dissipated by conduction (Pc) through the coil stand, Pc is roughly 

equal to: 

Pc = λ . (Tc-Ts) . Sw / Lc 

 λ the thermal conductivity equal to 384 W/(m.K) at 18 °C for copper, 

 Tc the mean coil temperature in °K, Ts the stand temperature in °K (supposed 

equal to 293 °K) 

 Lc the mean distance (in m) between the coil and the stand. Let’s suppose 

a mean value Lc = Lw/4 

About dissipation by radiation, according to the Stephan-Boltzmann law the radiated 

power (Pr) is equal to  

Pr = σ . ϵ . (Tc4 – T04). Sl, with: 

 σ the Stefan-Boltzmann constant equal to 5.67E-8 W/(m2.K-4) 

 ϵ the emissivity between 0.04 for polished copper and 0.87 for oxidized 

copper, with 1 for the perfect black body. Let’s suppose an emissivity of 0.8. 

 Tc the mean coil temperature in °K, T0 the room temperature in °K (293 °K in 

general) 

 Sl the lateral coil surface radiating in m2 =  2 . π . rw . Lw, for a round wire. 

In permanent behavior, the electrical power must be dissipated  by conduction and 

radiation (Pe=Pc+Pr). 

The current being very high to produce the necessary radial field, to reduce the 

power consumed, the wire radius rw must be relatively important, which can be a 

problem in front of the helix radius, by hiding the way of particles. A rectangular 

section for the wire could be a solution. In that case, it would be interesting in the 

radial field calculation, to take into account the reduction factor K introduced in the 

formula page 4 of the reference [1], i.e.: K=Sin(π.w/p) / (π.w/p), with w/p the fraction 

of cylinder surface covered by the ribbon.  

For example, for the corkscrew of 0.16 m length in §4 .2, with a helix radius “a” of 20 

mm, a mean pitch “p” equal to 47,6 mm, a wire length “Lw” equal to 0.451 m, a 

current of 1000 A and a limit of 7 A/mm2, the wire section must be equal to 143 mm2. 

This means a wire radius “rw” of 6.7 mm which is relatively high in front of the helix 

radius (20 mm). So a rectangular section would be better here.  

The power consumed (Pe) will be equal to 80 W and the coil temperature will be 

equal to 144°C. 
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Note that a current of 10000 A will give a wire section of 1429 mm2, so the wire 

radius will be equal 21.3 mm, i.e. superior to the coil radius, so such configuration is 

not physically possible at a standard temperature. Of course, copper cryogenically 

frozen or the use of a superconducting material at low temperature will remove this 

problem. 

 

6) Conclusion 

To focalize a particles beam with always the same characteristics (speed, direction 
and position at the helix entrance), the magnetic corkscrew is a solution to reduce the 
radial speed, but not to remove it completely. However, the necessary very elevated 
current at standard temperature limits drastically the interest of such system (see §5). 

To focalize a beam with particles having different characteristics (speed and 
position), the magnetic corkscrew is not the solution and can strongly reduce or 
increase the radial speed according to each particle. 

Reversely, to transform part of the axial speed in radial speed, as shown for example 
in the figure 4 of reference [1], this device is a solution. 
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