Patrick Lindecker (F6CTE) - Paris the 26th of April 2012

"Multidem" Version 1.2 TCP/IP protocol, for an exchange (RX/TX) between a "server" software and a "client" coding/decoding program

Modifications are in red characters

Revision 1.2 (26/04/2012) :

* possibility to receive (not yet to transmit) at a sampling frequency (Sf) of 48000 samples/second (48 KHz), for an exchange in "local loop", i.e server and client being in the same PC,
* simplification of the RX part “general rules”.
Revision 1.1 (12/08/2008) :

* 17000 samples is decreased to 7000 samples which is still enough and reduce the latency time.

Notes:

RX: reception,

TX: transmission

Transceiver=receiver (RX) + transmitter (TX)

"server" is worth for "server software"

"client" is worth for "client software"

"Sf" is worth for Sampling Frequency (in samples/s or KHz)

Important: Multidem or a SdR is the server, the decoding program (Multipsk for example) is the client
It is reminded that the TCP/IP link permits transmission without errors.

Introduction

The server software is waiting for TCP/IP connection (port 3020) when the client software takes the initiative to connect the server. The port 3020 is associated to the Multidem protocol, for the present version (1) and the further ones.

It is reminded that the Multidem protocol version 0 only manages one direction (Multidem to Multipsk) TCP/IP link when the version 1 manages both directions.

The server and the client can be in the same PC (linked through the 127.0.0.1 IP adress) or can be located in distant QRAs (linked through Internet using the IP or DNS of the PC hosting the server).

This protocol can be mainly used for two main applications:

1) to allow the Ham client to use the transceiver associated to a server.

In RX/TX, only one client can be managed by the server, so as to avoid the transmitter to be used by several Hams. The working is bidirectional simplex (not full-duplex working).

2) to allow the Ham or SWL client to use the receiver associated to a server.

In RX only, several clients could be managed by the server. In the current version of this protocol, only one client is managed.

Simple diagram of working

Receiver---->Server---->TCP/IP link---->Client.........RX operation

Transmitter<----Server<---TCP/IP link<---Client.....TX operation

Tasks of the server and the client
The tasks of the server software are:

1) to receive the base band (0 - 5.5 KHz for Sf=11.025 KHz or 0 - 24 KHz for Sf=48 KHz) acoustic sound (in form of data) coming from a radio set (the mean to receive this sound is out of the scope of this protocol),

2) to transform these data in samples for a transmission/reception at 11025 or 48000 samples/second, 8 bits by sample,

Note: the RX modem speed must be equal or superior to 88.2 Kbauds (for Sf=11,025 KHz) or 96 Kbauds (for Sf=48 KHz). As there is not use to a synchronization between the receiver and the client (samples are processed as soon as they are received), Internet connection problems are not very important, except for ARQ modes (as ARQ FAE for example).

3) to open a TCP/IP link so as to permit the connection from a client,

4) after the success of the connection, to transmit these samples to the client through the TCP/IP link (in local loop of the PC or through Internet),

5) to receive and manage the data coming from the client when this one is transmitting, the data flow (5512.5 or 11025 samples/second, 8 bits by sample),

Note: the TX modem speed must be equal or superior to 44,1 Kbauds at 5512.5 samples/sec and 88.2 Kbauds at 11025 samples/sec. As it is necessary to be sure that the transmitter gets samples to transmit, a buffer managed by the server is required and the quality of Internet frames transmission is important. The second speed permits to produce a better quality signal that the first one, but is more sensitive to Internet connection problems.
6) to extract the samples from these data,

7) to transmit its buffer size information to the client for synchronization needs,

8) to send these samples to the transmitter.

The tasks of the decoding client program are:

1) to connect the server through a TCP/IP link (in local loop of the PC or through Internet),

2) after the success of the connection, to receive the samples from the server through the TCP/IP link,

3) to decode the samples (RX operation),

4) to generate the samples (5512.5 or 11025 samples/second, 8 bits by sample) corresponding to the signal to be transmitted, if the Ham switches to transmission,

5) to transmit these samples to the server through specific frames, the synchronization being managed by the client based on server buffer size information, so as to permit to the server to receive the data flow at the same speed as the transmitter could absorb it.

Description of the protocol

This protocol is splitted in two parts: the RX one and the TX one.

Protocol for the RX part (issued from the Multidem TCP/IP protocol for the samples transmission)

Declaration phase

Just after the connection, the client sends successively several pieces of information:

* callsign (1 to 13 characters, capital letters, figures and "/") + password (10 characters maximum without space): these pieces of information are not mandatory, however the server may restrict the use to a group of persons.

The general rules are the following:

· In case of no callsign declared, the client will replace the callsign by "N0CALL" (N+zero+CALL) for "No callsign" (in this case the server can restrict the use of transmission (client to server)).
· the server responsible has the possibility to restrict the use of the server (either in RX and/or in TX) to the authorized persons who know the password.

The command is CHR(1)+CHR(2)+CHR(3)+'I'+CHR(a)+CHR(b)+Callsign+' '+Password

CHR(a) and CHR(b) for the number N of characters of the string "Callsign+' '+Password" with N=a.256+b with a and b between 0 and 255 (a will be always equal to 0 in fact and a maximum for b of 24)

* format of the RX frames + format of the TX frames

In this version of the protocol, there is only two formats possible, so it will be sent (by the client):

- either CHR(1)+CHR(2)+CHR(3)+'F'+CHR(0)+CHR(0), with first CHR(0) meaning RX at 11025 samples/second (server to client), 8 bits, mono and second CHR(0) meaning TX at 11025 samples/second (client to server), 8 bits, mono.

- or CHR(1)+CHR(2)+CHR(3)+'F'+CHR(0)+CHR(1), with the second CHR(1) meaning TX at 5512.5 samples/second (client to server), 8 bits, mono,
- or CHR(1)+CHR(2)+CHR(3)+'F'+CHR(4)+CHR(0), with first CHR(4) meaning RX at 48000 samples/second (server to client), 8 bits, mono and second CHR(0) meaning TX at 11025 samples/second (client to server), 8 bits, mono.

- or CHR(1)+CHR(2)+CHR(3)+'F'+CHR(4)+CHR(1), with first CHR(4) meaning RX at 48000 samples/second (from the server), 8 bits, mono and second CHR(0) meaning TX at 5512.5 samples/second (client to server), 8 bits, mono.

* version of this protocol ("2")

CHR(1)+CHR(2)+CHR(3)+'V02'

Samples transmission by the server to the client
Each sample is sent by the server as a byte (8 bits). The bytes transmission frequency is equal to 11.025 KHz or 48 KHz (according to the client requirement, see below). There is no control from the client. It is recommended for the server to send data by group (500 bytes per group at Sf=11025 and 2200 bytes per group at Sf=48000, for example) to avoid a CPU saturation.

Protocol for the TX part

The TX part is less simple as a synchronization is required because the client would have no way to know the speed at which it must send the samples (at worst, a book could be transmitted in 10 seconds when it would be necessary 1000 times more time for the transmitter).

The synchronisation is managed by the client based on server buffer size information.

Needs:

* the client must warn the server that it switches to TX and wants to transmit samples,

* the client must be able to transmit the samples (according the server control),

* the client must warn the server that it wants to end to transmit samples and switch to RX.

Type of transmission, commands and data frames

The flow of data is splitted into "commands" and "frames of data".

Each command or each data frame is sent in one individual TCP/IP frame (not shared in several TCP/IP frames). This means that the beginning of a received TCP/IP frame must be recognized as a command or a data frame. However, the received TCP/IP frame can contain several TCP/IP transmitted frames (commands or data frames).

When a command or a data frame is transmitted, the addressee (client or server) does not give any acknowledgement as the TCP/IP is supposed without error.

The prefix of the "commands" and "data frames" could be simple characters. But taking into account that the server or the client could under some circumstances (with a low probability) loses the synchronisation, each "command" and each " data frame" is prefixed with 3 control characters, so the probability to mix this sequence with another is very low (6 E-8) and guarantees a synchronisation recuperation.

A command will be prefixed with CHR(1)+CHR(2)+CHR(3) and will be always followed by one character defining the type of command and two figures.

A data frame is also prefixed with CHR(1)+CHR(2)+CHR(3) and will be always followed by one character defining the type of data frame and two figures, as "S"(for "Standard") if it is not the last data frame or "R" (for "last before "RX") if it is the last data frame (sent before switching to RX), followed by the number of samples (2 characters), which can be of any size (but conformed to the rules given afterwards). The data follows the number of samples

(Example: CHR(1)+CHR(2)+CHR(2) S 3 2).

1) The client must warn the server that it switches to TX and wants to transmit samples

The client transmits the command "T00" for "The client has switched to TX and wants to transmit samples".

After receiving this command the server switches the transceiver in TX position and stops transmitting samples to the client and initializes data reception.

2) The client must be able to transmit the samples (according to the server buffer state)
Preliminary: the server has a buffer able to store 65535 samples of data to be sent.

5 times by second (so a period of 200 ms) the server tells to the client the buffer state, i.e the number of samples stored in the buffer (with xyz between 0 and 65535 samples). So the server transmits the command:

1) "N" for "Number of samples in my buffer",

2) CHR(a) and CHR(b) for the number of samples (Ns) with Ns=a.256+b with a and b between 0 and 255

The minimum number is 0 and the maximum 65535 samples.

It is recommanded that the server internally be able to store 100.000 samples. In case the buffer size exceeds 65535, the server will transmit "65535". It must be very exceptional (possibly due to abrupt variations following the loss of the TCP/IP link during several seconds)

The client must have as a goal that the number of samples on the server buffer be equal to some fix target, initially (for 11025 samples/sec):

* 7000 (equivalent to 0.63 seconds of samples transmission) for a local loop TCP/IP (on the same PC),

* 45000 (equivalent to 4 seconds of samples transmission) for a distant TCP/IP loop (through Internet).

These values are not critical, but, about the second one, it must be considered that 2 seconds TCP/IP losses are frequent through Internet and that a margin is necessary.

For 5512.5 samples/sec, 7000 and 45000 must be divided by 2.

The TCP/IP loop (local or distant) must be considered as a regulation loop, this one having to maintain the server buffer size at the previous target size, even when losses of the TCP/IP link (typically 2 seconds).

So, as for a regulation, it will be used the error between the server buffer size and the target in a proportional function transmittance. However, the central transmitting speed will be equal to 11025 samples/sec. The correction will be applied to this speed. It's up to the user to find the adequate parameters according to the local conditions. A derivative function transmittance can be also added.

The regulation loop will use the server buffer sizes transmitted regularly by the server (5 times per second).

Note: if the interval ("i" in ms) between two server buffer states is not equal to the nominal value (200 ms for example), it will be possible to normalize the number of samples to send according to this interval.

It will must be preferable to limit to 3000 ms the interval taking into account, to avoid to destabilize the regulation. This because, in case of loss of the TCP/IP link during several seconds, the number of samples to be transmitted would be in this case suddenly very big and the regulation would be saturated giving place to a possible uncontrolled oscillation.

Afterwards, the client sends these samples by one or several data frames. A data frame is composed (apart to the prefix) of:

1) "S" for "This is a standard data frame, so not the last one"

2) CHR(a) and CHR(b) for the number of samples (Ns) with Ns=a.256+b with a and b between 0 and 255

The minimum number is 0 and the maximum 65535 samples.

Note: it is advised to internally up-to-dated the size of the server buffer (i.e the number of samples stored) after each samples transmission. Of course, the size of the server buffer transmitted by the server will have priority over the internal size.

3) The client must warn the server that it wants to end to transmit samples and switches to RX

It is done using the last frame transmitted, just before the RX switching of the client or just before the automatic RX switching (if it is a packet transmission as in 141A, Packet or Pax modes).

This frame will have a lenght equal to the number of samples internally stored and not yet transmitted (if not, it is not the last data frame).

The last data frame will be sent in the following way:

1) "R" for "This is the last data frame and the client has switched to RX "

2) CHR(a) and CHR(b) for the number of samples (Ns) with Ns=a.256+b with a and b between 0 and 255

When receiving this command the server manages the last samples transmitted by the client (adding the sample to its buffer), stops giving its buffer state to the client, empties its buffer (by transmission to the SdR transceiver) and, once its buffer be empty switches the transceiver in RX position. Afterwards, it comes back transmitting to the client the received samples from the receiver.

4) "Ping" message to measure the latency time
A "Ping" message could be issued from the client or the server to know the latency time.
It will be sent as "P00" for "This is a Ping message".

The client or the server would have only to return the same command and the same string as received.
The difference of time between the transmission and the reception of the "Ping" message will be the latency time (less of 50 ms would be good, one second would be very bad).

